» » Межпланетная эквилибристика. Перспективные космические аппараты Ядерные тепловые двигатели

Межпланетная эквилибристика. Перспективные космические аппараты Ядерные тепловые двигатели

Слово космос является синонимом слова Вселенная. Часто космос разделяют несколько условно на ближний, который возможно исследовать в настоящее время при помощи искусственных спутников Земли, космических аппаратов, межпланетных станций и других средств, и дальний - все остальное, несоизмеримо большее. По сути дела, под ближним космосом понимается Солнечная система, а под дальним - необъятные просторы звезд и галактик.

Буквальный смысл слова «космонавтика», представляющего собой сочетание двух греческих слов - «плавание во Вселенной». В обычном употреблении это слово означает совокупность различных отраслей науки и техники, обеспечивающих исследование и освоение космического пространства и небесных тел с помощью космических летательных аппаратов - искусственных спутников, автоматических станций различного назначения, пилотируемых космических кораблей.

Космонавтика, или, как ее иногда называют, астронавтика, объединяет в себе полеты в космическое пространство, совокупность отраслей науки и техники, служащих для исследования и использования космического пространства в интересах нужд человечества с использованием различных космических средств. Началом космической эры человечества считается 4 октября 1957 г. - дата, когда в Советском Союзе был запущен первый искусственный спутник Земли.

Теория космических полетов, представлявших давнюю мечту человечества, превратилась в науку в результате основополагающих трудов великого русского ученого Константина Эдуардовича Циолковского. Им были изучены основные принципы баллистики ракет, предложена схема жидкостного ракетного двигателя, установлены закономерности, определяющие реактивную силу двигателя. Так же были предложены схемы космических кораблей и даны широко вошедшие сейчас в практику принципы конструирования ракет. В течение продолжительного времени, до того момента, когда идеи, формулы и чертежи энтузиастов и ученых стали в конструкторских бюро и в цехах заводов превращаться в объекты, изготовленные «в металле», теоретический фундамент космонавтики покоился на трех китах: 1) теории движения космических аппаратов; 2) ракетной технике; 3) совокупности астрономических знаний о Вселенной. Впоследствии в недрах космонавтики зародился широкий цикл новых научно-технических дисциплин, таких, как теория систем управления космическими объектами, космическая навигация, теория космических систем связи и передачи информации, космическая биология и медицина и т. д. Сейчас, когда нам трудно представить себе космонавтику без этих дисциплин, полезно вспомнить о том, что теоретические основы космонавтики закладывались К. Э. Циолковским в то время, когда производились лишь первые опыты над использованием радиоволн и радио не могло считаться средством связи в космосе.

В течение многих лет в качестве средства связи всерьез рассматривалась сигнализация с помощью лучей солнечного света, отражаемых в сторону Земли зеркалами, находящимися на борту межпланетного корабля. Сейчас, когда мы привыкли не удивляться ни прямому телевизионному репортажу с поверхности Луны, ни полученным по радио фотографиям, сделанным вблизи Юпитера или на поверхности Венеры, в это трудно поверить. Поэтому можно утверждать, что теория космической связи, несмотря на всю свою важность, не является все же главным звеном в цепи космических дисциплин. Таким главным звеном служит теория движения космических объектов. Именно ее можно считать теорией космических полетов. Специалисты, занимающиеся этой наукой, сами называют ее по-разному: прикладная небесная механика, небесная баллистика, космическая баллистика, космодинамика, механика космического полета, теория движения искусственных небесных тел. Все эти названия имеют один и тот же смысл, точно выражаемый последним термином. Космодинамика, таким образом, является частью небесной механики - науки, изучающей движение любых небесных тел, как естественных (звезды, Солнце, планеты, их спутники, кометы, метеорные тела, космическая пыль), так и искусственных (автоматические космические аппараты и пилотируемые корабли). Но есть нечто, выделяющее космодинамику из небесной механики. Родившаяся в лоне небесной механики космодинамика пользуется ее методами, но не умещается в ее традиционных рамках.

Существенное отличие прикладной небесной механики от классической заключается в том, что вторая не занимается и не может заниматься выбором орбит небесных тел, в то время как первая занимается отбором из огромного числа возможных траекторий достижения того или иного небесного тела определенной траектории, которая учитывает многочисленные, зачастую противоречивые требования. Главное требование - минимальность скорости, до которой разгоняется космический аппарат на начальном активном участке полета и соответственно минимальность массы ракеты-носителя или орбитального разгонного блока (при старте с околоземной орбиты). Это обеспечивает максимальную полезную нагрузку и, следовательно, наибольшую научную эффективность полета. Учитываются также требования простоты управления, условий радиосвязи (например, в момент захода станции за планету при ее облете), условий научных исследований (посадка на дневной или ночной стороне планеты) и т. п. Космодинамика предоставляет в распоряжение проектировщиков космической операции методы оптимального перехода с одной орбиты на другую, способы исправления траектории. В поле ее зрения находится неведомое классической небесной механике орбитальное маневрирование. Космодинамика представляет собой фундамент общей теории космического полета (подобно тому как аэродинамика представляет собой фундамент теории полета в атмосфере самолетов, вертолетов, дирижаблей и других летательных аппаратов). Эту свою роль космодинамика делит с ракетодинамикой - наукой о движении ракет. Обе науки, тесно переплетаясь, лежат в основе космической техники. Обе они являются разделами теоретической механики, которая сама представляет собой обособившийся раздел физики. Будучи точной наукой, космодинамика использует математические методы исследования и требует логически стройной системы изложения. Недаром основы небесной механики были разработаны после великих открытий Коперника, Галилея и Кеплера именно теми учеными, которые внесли величайший вклад в развитие математики и механики. Это были Ньютон, Эйлер, Клеро, Даламбер, Лагранж, Лаплас. И в настоящее время математика помогает решению задач небесной баллистики и в свою очередь получает толчок в своем развитии благодаря тем задачам, которые космодинамика перед ней ставит.

Классическая небесная механика была чисто теоретической наукой. Ее выводы находили неизменное подтверждение в данных астрономических наблюдений. Космодинамика привнесла в небесную механику эксперимент, и небесная механика впервые превратилась в экспериментальную науку, подобную в этом отношении, скажем, такому разделу механики, как аэродинамика. На смену поневоле пассивному характеру классической небесной механики пришел активный, наступательный дух небесной баллистики. Каждое новое достижение космонавтики - это вместе с тем свидетельство эффективности и точности методов космодинамики. Космодинамика делится на две части: теорию движения центра масс космического аппарата (теорию космических траекторий) и теорию движения космического аппарата относительно центра масс (теорию «вращательного движения»).

Ракетные двигатели

Основным и почти единственным средством передвижения в мировом пространстве является ракета, которая для этой цели была впервые предложена в 1903 г. К. Э. Циолковским. Законы ракетного движения представляют собой один из краеугольных камней теории космического полета.

Космонавтика обладает большим арсеналом ракетных двигательных систем, основанных на использовании различных видов энергии. Но во всех случаях ракетный двигатель осуществляет одну и ту же задачу: он тем или иным способом выбрасывает из ракеты некоторую массу, запас которой (так называемое рабочее тело) находится внутри ракеты. На выбрасываемую массу со стороны ракеты действует некоторая сила, и согласно третьему закону механики Ньютона - закону равенства действия и противодействия - такая же сила, но противоположно направленная, действует со стороны выбрасываемой массы на ракету. Эта последняя сила, приводящая ракету в движение, называется силой тяги. Интуитивно ясно, что сила тяги должна быть тем больше, чем большая масса в единицу времени выбрасывается из ракеты и чем больше скорость, которую удается сообщить выбрасываемой массе.

Простейшая схема устройства ракеты:

На данном этапе развития науки и техники существуют ракетные двигатели, основанные на разных принципах действия.

Термохимические ракетные двигатели.

Принцип действия термохимических (или просто химических) двигателей не сложен: в результате химической реакции (как правило, реакции горения) выделяется большое количество тепла и нагретые до высокой температуры продукты реакции, стремительно расширяясь, с большой скоростью истечения выбрасываются из ракеты. Химические двигатели относятся к более широкому классу тепловых (теплообменных) двигателей, в которых истечение рабочего тела осуществляется в результате его расширения посредством нагревания. Для таких двигателей скорость истечения в основном зависит от температуры расширяющихся газов и от их среднего молекулярного веса: чем больше температура и чем меньше молекулярный вес, тем больше скорость истечения. По этому принципу работают жидкостные ракетные двигатели, ракетные двигатели твердого топлива, воздушно-реактивные двигатели.

Ядерные тепловые двигатели.

Принцип действия этих двигателей почти не отличается от принципа действия химических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «постороннего» тепла, выделяющегося при внутриядерной реакции. По этому принципу проектировались пульсирующие ядерные тепловые двигатели, ядерные тепловые двигатели на термоядерном синтезе, на радиоактивном распаде изотопов. Однако опасность радиоактивного заражения атмосферы и заключение договора о прекращении ядерных испытаний в атмосфере, в космосе и под водой, привели к прекращению финансирования упомянутых проектов.

Тепловые двигатели с внешним источником энергии.

Принцип их действия основан на получении энергии извне. По этому принципу проектируют гелиотермический двигатель, источником энергии которому служит Солнце. Концентрируемые с помощью зеркал солнечные лучи используются для непосредственного нагрева рабочего тела.

Электрические ракетные двигатели.

Этот обширный класс двигателей объединяет различные типы двигателей, которые очень интенсивно разрабатываются в настоящее время. Разгон рабочего тела до определенной скорости истечения производится за счет электрической энергии. Энергия получается от атомной или солнечной электростанции, находящейся на борту космического корабля (в принципе даже от химической батареи). Схемы разрабатываемых электрических двигателей чрезвычайно разнообразны. Это и электротермические двигатели, электростатические (ионные) двигатели, электромагнитные (плазменные) двигатели, электрические двигатели с забором рабочего тела из верхних слоев атмосферы.

Космические ракеты

Современная космическая ракета представляет собой сложное сооружение, состоящее из сотен тысяч и миллионов деталей, каждая из которых играет предназначенную ей роль. Но с точки зрения механики разгона ракеты до необходимой скорости всю начальную массу ракеты можно разделить на две части: 1) масса рабочего тела и 2) конечная масса, остающаяся после выброса рабочего тела. Эту последнюю часто называют «сухой» массой, так как рабочее тело в большинстве случаев представляет собой жидкое топливо. «Сухая» масса (или, если угодно, масса «пустой», без рабочего тела, ракеты) состоит из массы конструкции и массы полезной нагрузки. Под конструкцией следует понимать не только несущую конструкцию ракеты, ее оболочку и т. п., но и двигательную систему со всеми ее агрегатами, систему управления, включающую органы управления, аппаратуру навигации и связи, и т. п.,- одним словом, все то, что обеспечивает нормальный полет ракеты. Полезная нагрузка состоит из научной аппаратуры, радиотелеметрической системы, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения космического корабля и т. п. Полезная нагрузка - это то, без чего ракета может совершить нормальный полет.

Набору скорости ракеты благоприятствует то, что по мере истечения рабочего тела масса ракеты уменьшается, благодаря чему при неизменной тяге непрерывно растет реактивное ускорение. Но, к сожалению, ракета состоит не из одного лишь рабочего тела. По мере истечения рабочего тела освободившиеся баки, лишние части оболочки и т. д. начинают обременять ракету мертвым грузом, затрудняя ее разгон. Целесообразно в некоторые моменты отделять эти части от ракеты. Построенная таким образом ракета называется составной. Часто составная ракета состоит из самостоятельных ракет- ступеней (благодаря этому из отдельных ступеней можно составлять различные ракетные комплексы), соединенных последовательно. Но возможно и параллельное соединение ступеней, бок о бок. Наконец, существуют проекты составных ракет, в которых последняя ступень входит внутрь предыдущей, та заключена внутри предшествующей и т. д.; при этом ступени имеют общий двигатель и уже не являются самостоятельными ракетами. Существенный недостаток последней схемы заключается в том, что после отделения отработавшей ступени резко возрастает реактивное ускорение, так как двигатель остался прежним, тяга поэтому не изменилась, а разгоняемая масса ракеты резко уменьшилась. Это затрудняет точность наведения ракеты и предъявляет повышенные требования к прочности конструкции. При последовательном же соединении ступеней вновь включаемая ступень обладает меньшей тягой и ускорение не изменяется резким скачком. Пока работает первая ступень, мы можем рассматривать остальные ступени вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После отделения первой ступени начинает работать вторая ступень, которая вместе с последующими ступенями и истинной полезной нагрузкой образует самостоятельную ракету («первую субракету»). Для второй ступени все последующие ступени вместе с истинным полезным грузом играют роль собственной полезной нагрузки и т. д. Каждая субракета добавляет к уже имеющейся скорости собственную идеальную скорость, и в результате конечная идеальная скорость многоступенчатой ракеты складывается из суммы идеальных скоростей отдельных субракет.

Ракета является весьма «затратным» транспортным средством. Ракеты-носители космических аппаратов «транспортируют», главным образом, топливо, необходимое для работы их двигателей и собственную конструкцию, состоящую в основном из топливных контейнеров и двигательной установки. На долю полезной нагрузки приходится лишь малая часть (1,5-2,0%) стартовой массы ракеты.

Составная ракета позволяет более рационально использовать ресурсы за счет того, что в полете ступень, выработавшая свое топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полета.

Варианты компоновки ракет. Слева направо:

  1. Одноступенчатая ракета.
  2. Двухступенчатая ракета с поперечным разделением.
  3. Двухступенчатая ракета с продольным разделением.
  4. Ракета с внешними топливными емкостями, отделяемыми после исчерпания топлива в них.

Конструктивно многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней.

При поперечном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая схема дает возможность создавать системы, в принципе, с любым количеством ступеней. Недостаток ее заключается в том, что ресурсы последующих ступеней не могут быть использованы при работе предыдущей, являясь для нее пассивным грузом.

При продольном разделении первая ступень состоит из нескольких одинаковых ракет (на практике, от двух до восьми), располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сил тяги двигателей первой ступени была направлена по оси симметрии второй, и работающих одновременно. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая таким образом суммарную тягу, что особенно нужно во время работы первой ступени, когда масса ракеты максимальна. Но ракета с продольным разделением ступеней может быть только двухступенчатой.

Существует и комбинированная схема разделения - продольно-поперечная, позволяющая совместить преимущества обеих схем, при которой первая ступень разделяется со второй продольно, а разделение всех последующих ступеней происходит поперечно. Пример такого подхода - отечественный носитель "Союз".

Уникальную схему двухступенчатой ракеты с продольным разделением имеет космический корабль Спейс Шаттл, первая ступень которого состоит из двух боковых твердотопливных ускорителей, на второй ступени часть топлива содержится в баках орбитера (собственно многоразового корабля), а большая часть - в отделяемом внешнем топливном баке. Сначала двигательная установка орбитера расходует топливо из внешнего бака, а когда оно будет исчерпано, внешний бак сбрасывается и двигатели продолжают работу на том топливе, которое содержится в баках орбитера. Такая схема позволяет максимально использовать двигательную установку орбитера, которая работает на всем протяжении вывода корабля на орбиту.

При поперечном разделении ступени соединяются между собой специальными секциями - переходниками - несущими конструкциями цилиндрической или конической формы (в зависимости от соотношения диаметров ступеней), каждый из которых должен выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки, испытываемой ракетой на всех участках, на которых данный переходник входит в состав ракеты. При продольном разделении на корпусе второй ступени создаются силовые бандажи (передний и задний), к которым крепятся блоки первой ступени.

Элементы, соединяющие части составной ракеты, сообщают ей жесткость цельного корпуса, а при разделении ступеней должны практически мгновенно освобождать верхнюю ступень. Обычно соединение ступеней выполняется с помощью пироболтов. Пироболт - это крепежный болт, в стержне которого рядом с головкой создается полость, заполняемая бризантным взрывчатым веществом с электродетонатором. При подаче импульса тока на электродетонатор происходит взрыв, разрушающий стержень болта, в результате чего его головка отрывается. Количество взрывчатки в пироболте тщательно дозируется, чтобы, с одной стороны, гарантированно оторвать головку, а, с другой - не повредить ракету. При разделении ступеней на электродетонаторы всех пироболтов, соединяющих разделяемые части, одновременно подается импульс тока, и соединение освобождается.

Далее ступени должны быть разведены на безопасное расстояние друг от друга. (Запуск двигателя высшей ступени вблизи низшей может вызвать прогар ее топливной емкости и взрыв остатков топлива, который повредит верхнюю ступень, или дестабилизирует ее полет.) При разделении ступеней в атмосфере для их разведения может быть использована аэродинамическая сила встречного потока воздуха, а при разделении в пустоте иногда используются вспомогательные небольшие твердотопливные ракетные двигатели.

На жидкостных ракетах эти же двигатели служат и для того, чтобы «осадить» топливо в баках верхней ступени: при выключении двигателя низшей ступени ракета летит по инерции, в состоянии свободного падения, при этом жидкое топливо в баках находится во взвешенном состоянии, что может привести к сбою при запуске двигателя. Вспомогательные двигатели сообщают ступени небольшое ускорение, под действием которого топливо «оседает» на днища баков.

Увеличение числа ступеней дает положительный эффект только до определенного предела. Чем больше ступеней, тем больше суммарная масса переходников, а также двигателей, работающих лишь на одном участке полета, и, в какой-то момент, дальнейшее увеличение числа ступеней становится контрпродуктивным. В современной практике ракетостроения более четырех ступеней, как правило, не делается.

При выборе числа ступеней важное значение имеют также вопросы надежности. Пироболты и вспомогательные твердотопливные ракетные двигатели - элементы одноразового действия, проверить функционирование которых до старта ракеты невозможно. Между тем, отказ только одного пироболта может привести к аварийному завершению полета ракеты. Увеличение числа одноразовых элементов, не подлежащих проверке функционирования, снижает надежность всей ракеты в целом. Это также заставляет конструкторов воздерживаться от слишком большого количества ступеней.

Космические скорости

Чрезвычайно важно отметить, что скорость, развиваемая ракетой (а вместе с ней и всем космическим летательным аппаратом) на активном участке пути, т. е. на том сравнительно коротком участке, пока работает ракетный двигатель, должна быть достигнута очень и очень высокая.

Поместим мысленно нашу ракету в свободное пространство и включим ее двигатель. Двигатель создал тягу, ракета получила какое-то ускорение и начала набирать скорость, двигаясь по прямой линии (если сила тяги не меняет своего направления). Какую скорость приобретет ракета к моменту, когда ее масса уменьшится от начальной m 0 до конечной величины m k ? Если допустить, что скорость истечения w вещества из ракеты неизменна (это довольно точно соблюдается в современных ракетах), то ракета разовьет скорость v, выражающуюся формулой Циолковского , определяющая скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил:

где ln обозначает натуральный, а log - десятичный логарифмы

Скорость, вычисляемая по формуле Циолковского, характеризует энергетические ресурсы ракеты. Она называется идеальной. Мы видим, что идеальная скорость не зависит от секундного расхода массы рабочего тела, а зависит только от скорости истечения w и от числа z = m 0 /m k , называемого отношением масс или числом Циолковского.

Существует понятие так называемых космических скоростей: первой, второй и третьей. Первой космической скоростью называется такая скорость, при достижении которой тело (космический аппарат), запущенное с Земли, может стать ее спутником. Если не учитывать влияния атмосферы, то непосредственно над уровнем моря первая космическая скорость составляет 7,9 км/с и с увеличением расстояния от Земли уменьшается. На высоте 200 км от Земли она равна 7,78 км/с. Практически первая космическая скорость принимается равной 8 км/с.

Для того чтобы преодолеть притяжение Земли и превратиться, например, в спутник Солнца или достигнуть какой-нибудь другой планеты Солнечной системы, запускаемое с Земли тело (космический аппарат) должно достигнуть второй космической скорости, принимаемой равной 11,2 км/с.

Третьей космической скоростью у поверхности Земли телу (космическому аппарату) необходимо обладать в том случае, когда требуется, чтобы оно могло преодолеть притяжение Земли и Солнца и покинуть Солнечную систему. Третья космическая скорость принимается равной 16,7 км/с.

Космические скорости по своему значению огромны. Они в несколько десятков раз превышают скорость звука в воздухе. Только из этого ясно видно, какие сложные задачи стоят в области космонавтики.

Почему же космические скорости такие огромные и почему космические аппараты не падают на Землю? Действительно, странно: Солнце огромными силами тяготения удерживает около себя Землю и все другие планеты Солнечной системы, не дает им улететь в космическое пространство. Странно, казалось бы, то, что Земля около себя удерживает Луну. Между всеми телами действуют силы тяготения, но не падают планеты на Солнце потому, что находятся в движении, в этом-то и секрет.

Все падает вниз, на Землю: и капли дождя, и снежинки, и сорвавшийся с горы камень, и опрокинутая со стола чашка. А Луна? Она вращается вокруг Земли. Если бы не силы тяготения, она улетела бы по касательной к орбите, а если бы она вдруг остановилась, то упала бы на Землю. Луна, вследствие притяжения Земли, отклоняется от прямолинейного пути, все время как бы "падая" на Землю.

Движение Луны происходит по некоторой дуге, и пока действует гравитация, Луна на Землю не упадет. Так же и с Землей - если бы она остановилась, то упала бы на Солнце, но этого не произойдет по той же причине. Два вида движения - одно под действием силы тяготения, другое по инерции - складываются и в результате дают криволинейное движение.

Закон всемирного тяготения, удерживающий в равновесии Вселенную, открыл английский ученый Исаак Ньютон. Когда он опубликовал свое открытие, люди говорили, что он сошел с ума. Закон тяготения определяет не только движение Луны, Земли, но и всех небесных тел в Солнечной системе, а также искусственных спутников, орбитальных станций, межпланетных космических кораблей.

Законы Кеплера

Прежде чем рассматривать орбиты космических аппаратов, рассмотрим законы Кеплера, которые их описывают.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник - объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами - Сатурна и Юпитера - он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса - тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников - казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге, Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. И задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон описывает геометрию траекторий планетарных орбит: каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце. Из школьного курса геометрии - эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек - фокусов - равна константе. Или иначе - представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, - это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно - Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности. Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца: каждая планета движется в плоскости, проходящей через центр Солнца, причем за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу - тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой: квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать все сначала - накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона, закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам - гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним - и угловые скорости галактик в целом. Труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Орбиты

Большое значение имеет расчет траекторий полета космических аппаратов, в котором должна преследоваться основная цель - максимальная экономия энергии. При расчете траектории полета космического аппарата необходимо определять наиболее выгодное время и по возможности место старта, учитывать аэродинамические эффекты, возникающие в результате взаимодействия аппарата с атмосферой Земли при старте и финише, и многое другое.

Многие современные космические аппараты, особенно с экипажем, имеют относительно малые бортовые ракетные двигатели, главное назначение которых - необходимая коррекция орбиты и осуществление торможения при посадке. При расчете траектории полета должны учитываться ее изменения, связанные с корректировкой. Большая часть траектории (собственно, вся траектория, кроме активной ее части и периодов корректировки) осуществляется с выключенными двигателями, но, конечно, под воздействием гравитационных полей небесных тел.

Траектория движения космического аппарата называется орбитой. Во время свободного полета космического аппарата, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.

Если считать Землю строго сферической, а действие гравитационного поля Земли - единственной силой, то движение космического аппарата подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, - плоскости орбиты; орбита имеет форму эллипса или окружности (частный случай эллипса).

Орбиты характеризуются рядом параметров - система величин, определяющих ориентацию орбиты небесного тела в пространстве, ее размеры и форму, а также положение на орбите небесного тела в некоторый фиксированный момент. Невозмущенную орбиту, по которой движение тела происходит в соответствии с законами Кеплера, определяют:

  1. Наклонение орбиты (i) к плоскости отсчета; может иметь значения от 0° до 180°. Наклонение меньше 90°, если для наблюдателя, находящегося в северном полюсе эклиптики или в северном полюсе мира, тело представляется движущимся против часовой стрелки, и больше 90°, если тело движется в противоположном направлении. В применении к Солнечной системе, за плоскость отсчета обычно выбирают плоскость орбиты Земли (плоскость эклиптики), для искусственных спутников Земли за плоскость отсчета обычно выбирают плоскость экватора Земли, для спутников других планет Солнечной системы за плоскость отсчета обычно выбирают плоскость экватора соответствующей планеты.
  2. Долгота восходящего узла (Ω) - один из основных элементов орбиты, используемых для математического описания формы орбиты и ее ориентации в пространстве. Определяет точку, в которой орбита пересекает основную плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, основная плоскость - эклиптика, а нулевая точка - Первая точка Овна (точка весеннего равноденствия).
  3. Большая полуось (а) - это половина главной оси эллипса. В астрономии характеризует среднее расстояние небесного тела от фокуса.
  4. Эксцентриситет - числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия и характеризует «сжатость» орбиты.
  5. Аргумент перицентра - определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д.
  6. Средняя аномалия для тела, движущегося по невозмущенной орбите - произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом, средняя аномалия есть угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению.

Существуют различные типы орбит - экваториальные (наклонение "i" = 0°), полярные (наклонение "i" = 90°), солнечно-синхронные орбиты (параметры орбиты таковы, что спутник проходит над любой точкой земной поверхности приблизительно в одно и то же местное солнечное время), низкоорбитальные (высоты от 160 км до 2000 км), среднеорбитальные (высоты от 2000 км до 35786 км), геостационарные (высота 35786 км), высокоорбитальные (высоты более 35786 км).

Назовем проекцией спутника на земную поверхность точку, в которой радиальная прямая (линия, соединяющая спутник с центром Земли) пересекает поверхность земного шара. При движении спутника вокруг Земли, вращающейся внутри его орбиты, проекция прочерчивает на земной поверхности некоторую линию, которая называется трассой спутника. Трасса соединяет те пункты материков и океанов, над которыми спутник в разные моменты

времени оказывается в зените, т. е. над головой наблюдателя Форма трассы определяется главным образом наклонением орбиты и периодом обращения. Благодаря тому, что трасса вычерчивается спутником на вращающейся Земле, угол пересечения трассой экватора всегда отличается от наклонения орбиты. В частности, для полярных орбит он не равен 90° (при пересечении экватора проекция спутника отклоняется к западу).

Для спутников с низкими орбитами и прямым движением (наклон меньше 90°) трасса напоминает синусоиду, многократно опоясывающую земной шар. Эта форма трассы всем хорошо известна со времени запуска первого искусственного спутника Земли, и мы ее не приводим.

Рис. 32. Трассы спутников с круговыми орбитами при наклоне 65° и периодах обращения;

На подобных трассах движение всюду направлено к северо-востоку или юго-востоку, а в крайних северных и южных точках - на восток.

Дело обстоит иначе при больших периодах обращения. Даже при движении спутника в сторону вращения Земли его проекция может отставать от вращения Земли (особенно вблизи экватора, где линейная скорость точек поверхности больше), и тогда движение по крайней мере на части трассы будет происходить в западном направлении (рис. 32) .

Спутник связи, а также спутник для исследования земной поверхности часто запускаются на кратно-периодические орбиты (их иногда называют также синхронными), т. е. орбиты с периодом обращения, почти соизмеримым со временем одного оборота Земли вокруг оси (звездные сутки 23 ч 56 мин 4 с). «Почти» объясняется прецессией орбиты: если бы поле тяготения Земли было центральным, то выбирался бы период, в точности соизмеримый звездным суткам. Трассы таких спутников представляют собой замкнутые

линии, так что над любой точкой трассы спутник появляется периодически и вовсе не появляется над ограниченными областями, «лежащими в стороне». Пример - спутник связи «Молния-1» .

На рис. 33 показаны трассы пяти суточных спутников с круговыми орбитами, обладающими наклонами 60, 40 и 20°. Эти трассы-«восьмерки» не опоясывают земной шар, а лежат на одной его стороне (при обратном движении дело бы обстояло иначе)

7 т R

| r R н || R н |

| 7 | R e

Рис. 2.2.5. Геометрия видимости, - геоцен трический угол обзора, h - высота полета КА над Землей

Аджян А.П., Аким Э.Л., Алифанов О.М., Андреев А.Н. Ракетно-космическая техника. Машиностроение. Энциклопедия. T. IV-22 В двух книгах. Книга первая

Рис. 2.2.6. Взаимная видимость двух КА

Угол полураствора конуса обзора со сто роны КА равен:

Ι Η .

ется над Землей (рис. 2.2.6). Для практических целей это условие обычно усиливается - ли ния визирования должна находиться над плот ными слоями атмосферы (h атм 4 100 км).

Данное условие можно представить в виде

| r 1 | sin , R з h атм ,

(r 2

r1 )

Arccos

| r | | r

Трассы полета КА. Трасса полета КА представляет собой траекторию подспутнико вой точки на поверхности Земли. Географиче ские координаты (широта и долгота) подспут никовой точки (без учета прецессии плоскости орбиты):

Для круговых орбит размер поля обзора Η постоянен, а для эллиптических орбит изме няется в зависимости от высоты полета h .

Условие взаимной видимости двух КА - линия, соединяющая их положения располага

где i - наклонение орбиты, u - аргумент широ ты; ву - Гринвичская долгота восходящего уз ла; t - время от восходящего узла; ; з - угловая скорость вращения Земли. Здесь используется круговая функция arctg (…, …), где первый член соответствует синусу искомого угла, а второй - косинусу этого угла. Пример трассы полета МКС (круговая орбита с i 51,6 , h 400 км) приведен на рис. 2.2.7.

Рис. 2.2.7. Пример трассы полета МКС

Аджян А.П., Аким Э.Л., Алифанов О.М., Андреев А.Н. Ракетно-космическая техника. Машиностроение. Энциклопедия. T. IV-22 В двух книгах. Книга первая

Скорость движения по трассе для кру говой орбиты (аргумент широты u ; t , где ; - угловая скорость орбитального движе ния):

sini cosu

1 sin2 i sin2 u

cosi

sin2 i sin2 u

Особым случаем являются орбиты, имею щие нулевое наклонение i 0 и период, равный звездным суткам. В этом случае КА остается неподвижным относительно поверхности Зем ли. Такие КА называют геостационарными (см. п. 2.2.5).

Примеры трасс КА на различных круго вых орбитах показаны на рис. 2.2.8.

Геометрические свойства трасс на эл липтических орбитах в силу существенных

различий скорости полета КА относительно Земли носят более сложный характер, свя занный с монотонностью изменения долго ты, геодезической кривизной и характером точек самопересечения. Примеры эллипти ческих орбит с периодами T 6; 18 ч, иллю стрирующих влияние эксцентриситета ор биты на трассы КА при неизмененных ос тальных параметрах орбит, представлены на рис. 2.2.9.

Освещенность КА и Земли. Важное зна чение при анализе полета КА имеют условия его освещенности Солнцем, которые влияют на нагрев КА, оптическую аппаратуру звезд ных датчиков, эффективность работы сол нечных батарей и т.д. Характер освещенно сти зависит от взаимного положения самого КА, Солнца, Земли, а в некоторых случаях и Луны.

Геометрия образования теневых участков от Земли показана на рис. 2.2.10. С учетом гео метрических размеров Солнца и Земли разли чают собственно теневые и полутеневые участ ки. В последнем случае солнечный диск час тично закрыт Землей (рис. 2.2.11).

Полутеневые интервалы для низковысот ных и средневысотных орбит КА обычно су щественно меньше длительности самого тене вого участка, поэтому для расчетов теневых интервалов используют более простую геомет рическую интерпретацию в теневого ци линдра. Упрощенное представление тени на орбите иллюстрирует рис. 2.

Аджян А.П., Аким Э.Л., Алифанов О.М., Андреев А.Н. Ракетно-космическая техника. Машиностроение. Энциклопедия. T. IV-22 В двух книгах. Книга первая

Рис. 2.2.9. Примеры трасс эллиптических орбит

Рис. 2.2.10. Геометрия образования теневых участков от Земли:

R з - радиус Земли; R c - радиус Солнца; r c - радиус вектор Солнца; r o - радиус вектор КА; a т - граничный угол области тени; a ПT - граничный угол области полутени

Условие нахождения КА в тени можно представить в виде:

r 2 (r т e

) 2 R

5 / 2,

где e s - единичный вектор направления на Солнце.

Угол , (рис. 2.2.12) называют углом «Солнце – Объект – Земля». Он также опреде ляет освещенность подспутниковой точки, и

Рис. 2.2.11. Видимый солнечный диск:

а - полная освещенность; б - полутень; в - тень

при ϑΚ сответствует линии смены дня и ночи на поверхности Земли, называемой ли нией терминатора .

Плоскость орбиты КА прецессирует в инерциальном пространстве с некоторой угло вой скоростью, а видимое положение Солн ца описывается сложным движением с перио дом один год, поэтому продолжительность те невых интервалов и их положение на орбите меняются по времени полета КА. В зависимо сти от параметров самой орбиты и положения Солнца теневые участки в какие то периоды времени могут отсутствовать и в исключитель ном случае отсутствовать всегда. Последнее возможно, если скорость прецессии орбиты очень близка к угловой скорости смещения Солнца по экватору относительно инерциаль ного пространства. Этот случай соответствует солнечно синхронным орбитам (см. п. 2.2.5).

Аджян А.П., Аким Э.Л., Алифанов О.М., Андреев А.Н. Ракетно-космическая техника. Машиностроение. Энциклопедия. T. IV-22 В двух книгах. Книга первая

БАЛЛИСТИЧЕСКИЕ УСЛОВИЯ ПОЛЕТА КОСМИЧЕСКИХ АППАРАТОВ

Рис. 2.2.12. Упрощенное представление тени на орбите:

1 - КА; 2 - линия терминатора

Для орбиты МКС (наклонение i 51,6 , высота h 4 400 км) скорость прецессии узла− 5,0 ϑ сут, а средняя угловая скорость дви жения Солнца в годичном движении s 0,98 ϑ сут. Таким образом, угол между ли нией узлов орбиты КА и проекцией направле ния Солнца на экватор ежесуточно изменяется на s − 6 . Это означает, что условия ос вещенности орбиты МКС меняются с перио дичностью 4 60 суток. Пример распределения времен начала и окончания теневых интерва лов по шкале относительного времени от мо ментов прохождения восходящего узла для ор биты МКС в 2005 г. показан на рис. 2.2.13.

Угловое положение Солнца над плоско стью земного экватора также оказывает влия ние на теневые интервалы. Особенно это ярко

Рис. 2.2.13. Теневые интервалы для орбиты МКС в 2005 г.

марта) и осеннего (4 22 сентября) равноденст вий Солнце находится близко к плоскости земного экватора. Поэтому все геостационар ные КА будут ежедневно иметь теневые интер валы до тех пор, пока угол возвышения s Солнца над земным экватором не превысит по абсолютной величине 4 9 . Это соответствует датам, отстоящим от дат весеннего и осеннего равноденствия на / 22…23 дня. Затенение гео стационарного КА показано на рис. 2.2.14. Ас трономическое время суток для интервала за тенения геостационарного КА зависит от его долготы, а характер изменения длительности тени - от дат и подобен для всех геостацио нарных КА (рис. 2.2.15) с максимальной дли тельностью тени 4 1h 20m .

В ряде случаев необходимо также учиты вать возможность затенения КА Луной. Гео метрия образования лунной тени показана на рис. 2.2.16.

Вероятность таких событий для орбит с большими наклонениями мала. Для геоста ционарных орбит образование теневых интер валов носит относительно регулярный харак тер и случается несколько раз в год, причем собственно теневые интервалы могут отсутст вовать, а преимущественно имеются полутене вые интервалы. Их продолжительность может достигать до 4 3…4 ч.

Географические вычисления при анализе и визуализации полета КА. Вычисления, опре деляющиеся географическим представлени

Аджян А.П., Аким Э.Л., Алифанов О.М., Андреев А.Н. Ракетно-космическая техника. Машиностроение. Энциклопедия. T. IV-22 В двух книгах. Книга первая

Рис. 2.2.14. Затенение геостационарного КА

Рис. 2.2.15. Длительность интервалов для геостационарного КА

Рис. 2.2.16. Геометрия образования лунной тени

ем различных баллистических условий (для анализа и/или визуализации полета КА), связаны с определением геоцентрических широты и долготы точки на поверхности сферической Земли, отстоящей от некоторой заданной точки А (долгота А и широта А ) на заданное геоцентрическое расстояние в направлении, определяемом азимутом. Взаимное положение двух точек на поверх ности Земли иллюстрируется на рис. 2.2.17.

Соответствующие соотношения имеют вид:

Для обратного преобразования - опреде ления геоцентрического расстояния между дву мя заданными точками и азимута соединяющей их линии большого круга (в точке А ) использу ются соотношения:

arcsin (sin

cos cos

Arctg & sin sin ,

cos A

Η arccos;

arctg & sin (B A )

cos A

Здесь используется круговая функция arctg (…, …), где первый член соответствует синусу иско мого угла, а второй - его косинусу.

Для построения поля обзора наземным измерительным пунктом на поверхности Земли для КА на круговой орбите использу ется следующий алгоритм. По высоте орби ты h КА определяется геоцентрический угол сферического сегмента Η (2.2.80). Задавая значения азимута в диапазоне от 0 до 2 используя уравнения (2.2.91) рассчитывается множество граничных точек. На рис. 2.2.18 показаны примеры полей обзоров наземных пунктов, используемых для управления по летом КА «Союз» (Москва, Уссу рийск, Колпашев, Петропавловск Камчат

Для цилиндрической модели затенения Земли мгновенное положение линии терми натора (рис. 2.2.19) определяет большой круг, у которого точка А определяет направление на Солнце. В этом случае Η /2 и координа ты граничных точек определяются соотноше

sin B cos A cos ;

tg (B A )

sin A

d s 23)

ским радиусом /2 С с использова

нием соотношений (2.2.91), положив

А / i , А ВУ / /2 и Η /2 С . Однако за счет вращения Земли на

клон трассы к параллели будет отли чаться от наклона для малого круга на поверхности сферы. Наклон трас сы КА и граничные точки полосы об зора представлены на рис. 2.2.21.

Уравнения для определения этого

cosu sini

cosi

cos2

Рис. 2.2.20. Полоса обзора

круговой орбиты на постоянный геоцентри ческий угол С . В этом случае они могут быть определены как малые круги со сфериче

Рис. 2.2.21. Наклон трассы КА и граничные точки полосы обзора

Откуда определяется угол наклона трассы (см. рис. 2.2.21):

d / du

Ι arctg

d / du

Полагая / /2 Ι ; А ; А ; и Η /2 С (, - координаты трассы КА) в

(2.2.91), определяются две граничные точки полосы обзора.

Для географической визуализации полета КА обычно используются цилиндрические про екции. Однако в ряде случаев более наглядным является применение других картографических проекций. Основные виды географических проекций разделяются на три типа:

– цилиндрические;

– конические;

– азимутальные.

Для каждого типа имеется множество разновидностей, различающихся степенью сжатия и преобразования различных геогра фических областей. На рис. 2.2.22–2.2.24 по казаны геометрические иллюстрации образо вания указанных типов проекций, и для срав нения представлены отображения трасс со средним наклонением i 45 и высоким на клонением i 85 (для КА на круговой орбите h − 1680 км, Т 2 ч), а также полей обзора на блюдателей на Гринвичском меридиане с ши ротами 0; 40; 80 .

Цилиндрические проекции дают нагляд ное представление приэкваториальной зо ны и средних широт. Конические проекции учитывают эффект изменения длины паралле ли при изменении широты, тем самым более точно отображают площадь областей, находя

Аджян А.П., Аким Э.Л., Алифанов О.М., Андреев А.Н. Ракетно-космическая техника. Машиностроение. Энциклопедия. T. IV-22 В двух книгах. Книга первая

В настоящее время в различных странах продолжаются работы по созданию новых перспективных летательных аппаратов. Рассматриваются возможности развертывания системы малых спутников, совмещающих функции обеспечения радиосвязи и зондирования.

В России подходит к завершению разработка космического комплекса «Ресурс-ДК». Он предназначен для многозонального дистанционного зондирования земной поверхности с целью получения в масштабе времени близкому к реальному, высокоинформативных изображений в видимом и ближнем инфракрасном диапазонах электромагнитного спектра с обеспечением оперативной доставки информации по радиоканалу и последующим представлением ее широкому кругу потребителей. Срок существования КА не менее трех лет. Полоса обзора Каот 780 до 1040км, полоса захвата съемкой от 48,5 до 78 км. Разрешение на местности от 1,8 до 3 метров. Существенной особенностью данного КА является то, что при съемке в полосе обзора можно осуществлять перенацеливание съемочной аппаратуры. Съемка одного и того же участка местности со смежных орбит позволяет получать стереоскопическую модель местности.

К перспективным средствам доставки полезных грузов, а также средств дистанционного зондирования на околоземную орбиту следует отнести российский проект многоцелевой авиационно-космической системы (МАКС). Идея создания этой системы зародилась в связи со сложностью строительства и эксплуатации стационарных стартовых комплексов. С помощью данной системы появилась возможность доставки космического аппарата для запуска в любой заданный удаленный регион, например, на акваторию океана, пустыню и т.д.

МАКС состоит из самолета-носителя АН-225 (Мрия) и установленном на нем орбитальном самолете (в пилотируемом или беспилотном варианте) или грузовом контейнере с внешним топливным баком. Бак заправляется криогенными компонентами топлива. МАКС базируется на обычных аэродромах первого класса. Основные элементы данной системы выполняются в многоразовом исполнении, кроме внешнего топливного бака и блока выведения.

МАКС предназначен для решения следующих задач:

Выведения на околоземную орбиту и возврат с орбиты полезных грузов;

Транспортно-техническое обеспечения космических объектов различного назначения;

Проведения на орбите аварийно-спасательных работ;

Решения на орбите научно-технических и технологических задач;

Осуществления экологического контроля;

Дистанционного зондирования с целью изучение природных ресурсов Земли.

В Европейском космическом агентстве подходит к завершению проектирование космического корабля многоразового использования под названием «Гермес». В Германии разрабатывается орбитальный самолет «Зенгер». В Великобритании разрабатывается техническая идея самолета «Хотол», который не нуждается в ракете-носителе, а разгоняется с помощью собственного двигателя, использующего кислород воздуха, для этого на борту будет установка по снижению воздуха с последующим отделением жидкого кислорода.

3.3. Орбиты космических летательных аппаратов

Космические летательные аппараты движутся вокруг Земли по определенным орбитам. В отличие от самолета они имеют ограниченные возможности маневрирования. Для математического описания движения КЛА служат определенные элементы орбит. При характеристике эллиптических орбит используют шесть основных элементов:

- долгота восходящего узла,

í - наклонение орбиты,

ω - элемент перигея,

а - большая полуось орбиты,

l - эксцентриситет орбиты

tΩ - момент прохождения КЛА через восходящий узел орбиты (точка перехода КЛА из Южного полушария в Северное).

Иногда вместо элементов а и l используют высоты орбиты в точках перигея Hn наименьшее, и апогея На наибольшее удаление над поверхностью Земли.

Для описания круговой орбиты достаточно всего четырех элементов орбиты: , í , H , tΩ .

- долгота восходящего узла – угол расположенный в плоскости земного экватора и отсчитываемый от направления на точку весеннего равноденствия и линией пересечения плоскости орбиты с плоскостью экватора;

í - наклонение орбиты – двугранный угол между плоскостью орбиты и плоскостью земного экватора, отсчитываемый от последней против хода часовой стрелки для наблюдателя в точке восходящего узла или угол между плоскостью орбиты и плоскостью экватора;

Н - высота круговой орбиты над поверхностью Земли;

tΩ - время прохождения КЛА через восходящий узел орбиты.

В зависимости от целей, для которых проводится космическая съемка, при выборе орбит к ним предъявляется ряд условий:

Получение космических снимков определенного масштаба;

Наибольшее изображение территории земной поверхности на одном космическом снимке;

Возможность постоянного наблюдения за глобальными процессами одной и той же территории;

Обеспечение наименьших изменений в освещенности Солнцем земной поверхности по трассе полета космического аппарата;

Возможность покрытия съемкой практически всей земной поверхности.

Для того чтобы выполнить данные условия, орбиты должны иметь определенные параметры: высоту, форму, наклонение, период обращения, положение по отношению к Солнцу.

С высотой полета КА изменяется воздействие атмосферы на его движение. На более низких орбитах сопротивление атмосферы существенно больше, а при высоте менее 100 км торможение настолько велико, что КА не может совершить и одного оборота и сгорает падая вниз. С увеличением высоты орбиты увеличивается продолжительность существования КА, охват съемкой, но уменьшается пространственное разрешение снимков.

По высоте орбит КА подразделяются на три группы: низкоорбитальные 100-500 км, среднеорбитальные 500-2000 км и высокоорбитальные 30000-40000 км.

Первая включает орбиты пилотируемых космических кораблей и орбитальных станций с высотами орбит 200-400 км.

Вторая включает ресурсные ИСЗ с высотой 600-900 км и метеорологические - 900-14000 км.

К третьей группе с высотой орбит 30000-40000 км относятся метеорологические ИСЗ и спутники связи.

Форма орбит в зависимости от скорости КЛА может быть круговой, эллиптической, гиперболической или параболической.

Круговые орбиты широко используется для проведения космических съемок как с пилотируемых, так и автоматических космических аппаратов. Для того чтобы вывести космический аппарат на круговую орбиту он должен развить скорость равной 7905 м/с. Эта скорость называется первой космической. Скорость движения КЛА по круговой орбите зависит от удаления его от поверхности Земли или ее центра, и чем больше высота полета Н , тем меньшая потребуется скорость, чтобы удержать его на круговой орбите. Высота полета КА аппарата существенно влияет на масштаб получаемых космических снимков. Так как у круговых орбит, высоты перигея и апогея одинаковы или близки друг к другу, а значит и высота съемки всегда одинакова, то такие орбиты наиболее предпочтительны для получения космических снимков земной поверхности близких по масштабу, охвату территории и пространственному разрешению изображений.

Эллиптические орбиты в отличие от круговых имеют различные расстояния от поверхности Земли в апогее и перигее. Кроме того, в апогее КА бывает более продолжительное время над определенной территорией земной поверхности, чем в перигее. Следовательно, эти орбиты можно использовать для наблюдений за глобальными процессами, например за динамикой атмосферных явлений, когда в поле зрения аппарата в течение продолжительного времени необходимо иметь диск Земли в целом. Съемку, в данном случае, производят на участке наибольшего удаления в состоянии «зависания» спутника над Землей.

Гиперболическая и параболическая орбиты используются для полетов КЛА к другим планетам. Для вывода КА на незамкнутую гиперболическую или параболическую орбиту, он должен развить скорость способную преодолеть земное притяжение. Такой скоростью является вторая космическая, которая равна 11186 м/с.

По углу наклонения плоскости орбиты к плоскости земного экватора, орбиты разделяют на: экваториальные (1=0°), полярные (1=90°) и наклонные. К наклонным орбитам относятся прямые (0°<1< 90°) и обратные (90°< 1 < 180°). Это разделение зависит от направления запуска космического аппарата относительно вращения Земли. Наклонение орбиты определяет тот широтный пояс, в пределах которого пролетает спутник. Орбиты первых американских пилотируемых кораблей имели наклонение 30°; российские пилотируемые корабли и орбитальные станции работают на орбитах с наклонением 52°, метеорологические и ресурсные спутники запускаются на субполярные орбиты с наклонением 90°. Спутник, находясь на орбите проецируясь на земную поверхность, образует подспутниковую точку. При движении по орбите спутника, подспутниковая точка на земной поверхности, благодаря вращению Земли, описывает линию называемую трассой. Очевидно, что трасса, вдоль которой производится съемка, не может пройти через районы земного шара, географическая широта которых больше, чем наклонение орбиты. Чем ближе наклон орбиты к 90°, тем больше площадь покрытия съемкой земной поверхности.

Период обращения Т - время оборота спутника вокруг Земли - также представляет интерес с точки зрения съемки, поскольку от него зависит число витков в сутки и соответственно межвитковое расстояние, определяющее возможность перекрытия снимков соседних трасс. Для круговой орбиты скорость спутника постоянна и зависит от ее высоты Н . Для околоземных орбит период обращения спутника (в минутах) можно вычислить по формуле: .

В среднем период обращения составляет 1,5 часа или 16 витков в сутки.

В зависимости от периода обращения орбиты подразделяются на геосинхронно периодические или суточн ые, геосинхронно периодические не суточные и геостационарные.

Геосинхронно периодическими или суточными называются орбиты, для которых период обращения спутника выведенного на наклонную орбиту вокруг Земли, составляет 24 часа. Такой спутник через каждые 24 часа будет пролетать над одной и той же точкой местности.

Момент прохождения над данной точкой будет зависеть от времени вывода его на круговую орбиту. Это значит, что такой спутник будет постоянно вести съемку одной и той же трассы полета.

Геосинхронными периодическими , но не суточными называют спутники, период обращения вокруг Земли, которых будет кратен 24 часам, но не равен суткам. Это значит, что такой спутник, благодаря вращению Земли, в одно и тоже время, в течение каждых последующих суток будет пролетать над разными точками земной поверхности, т.е. будет происходить сдвиг трассы спутника. Например, на орбитах со скоростью спутника 11 км/с они имеют период обращения примерно 1,5 часа, делая за сутки около 16 витков вокруг Земли. В данном случае сдвиг трассы составит 22,5°, что на экваторе будет соответствовать 2500 км. Учитывая, что при фотографической съемке охват территории большинства видов аппаратуры значительно меньше, то разрывы между соседними трассами неизбежны. Для проведения космической съемки с некоторым поперечным перекрытием орбиты рассчитывают таким образом, чтобы каждая последующая трасса съемки обеспечивала бы определенное перекрытие предыдущей трассы. Это возможно на так называемых квазипериодических орбитах т.е. околоземных круговых орбитах с периодом обращения, не кратным данным суткам. В данном случае со сменой суток на местности будет наблюдаться положительное или отрицательное смещение трасс, называемое суточным сдвигом.

Если спутник вывести на экваториальную круговую орбиту с высотой 36 000 км, то его период обращения будет равен 24 часам, т.е. одним суткам, угловая скорость его вращения по орбите будет равна угловой скорости вращения Земли. Трасса такого спутника будет представлять собой точку, так как он будет все время находится над одной и той же точкой экватора. Такой спутник и орбиту называют геостационарными. С геостационарной орбиты, на которой спутник как бы зависает над одной и той же территорией можно вести постоянное наблюдение за определенным районом Земли. Для того чтобы держать в поле зрения всю Землю, кроме полярных шапок, требуется четыре-пять геостационарных спутников. Геостационарные орбиты используются для вывода на них метеорологических спутников и спутников связи. Структура и принципы построения подсистемы метеорологических спутников на геостационарных орбитах, выбирается с учетом следующих основных требований:

Число спутников на геостационарной орбите должно быть достаточным, чтобы обеспечить наблюдение и доведение метеоинформации в пределах широтного пояса 50° ю.ш.;

Сбор метеорологической информации должен осуществляться непрерывно;

Периодичность выдачи потребителям обновленных метеоданных не должен превышать 0,5 часа.

К 1995г. полностью развернута международная система геостационарных спутников и эти требования реализуются подсистемой из пяти спутников: двух американских, европейского, российского и японского космического аппарата.

Передача информации может осуществляться как в пределах целого полушария, так и по отдельным частям. Для этого земной шар разбивается на отдельные форматы, в пределах которого производится съемка, передача и ретрансляция информации. Например, при передаче информации метеорологической системой Мeteostat используется восемь форматов, имеющих условные буквенные обозначения "А ", "В ", "X ", "С " и т.д. (рис.2).

Продолжительность передачи информации зависит от размеров наблюдаемого участка и используемых спектральных каналов. Так, минимальная продолжительность передачи данных (в формате "В ") составляет 1,4 мин, максимальная продолжительность передачи информации (в формате "А ") составляет 30 мин. Для того, чтобы исключить наложения передаваемых данных в системе используются ежечасные защитные интервалы длительностью 4 минуты.

Солнечно-синхронный тип орбит выбирается в тех случаях, когда съемку необходимо выполнять многократно и при некоторых заданных условиях освещенности поверхности Земли вдоль трассы полета КА. При невозмущенном кеплеровском движении спутника плоскость его орбиты, двигаясь вместе с Землей вокруг Солнца, сохраняет неизменное положение в мировом пространстве. Следовательно, угол между плоскостью такой орбиты и солнечными лучами в течение года меняется на 360°, т.е. приблизительно на один градус в сутки. Однако известно, что сплюснутость Земли, или экваториальное вздутие, поворачивает орбиту. Величина этого поворота существенно зависит от наклонения и в меньшей степени от высоты орбиты спутника. Можно точно рассчитать и подобрать наклонение и высоту орбиты так, чтобы угловая скорость поворота орбиты соответствовала скорости вращения Земли вокруг Солнца. В таком случае угол между плоскостью орбиты и солнечными лучами остается почти неизменным. Поэтому высота Солнца в момент прохождения спутника над определенной точкой Земли всегда одна и та же, вследствие этого освещенность трассы во время съемки изменяется только в зависимости от времени года. Расчеты показали, что солнечно-синхронная орбита по наклонению должна быть обратной, т.е. в пределах от 90° до 180°, а высота не превышать 1000 км. В зависимости от времени пролета ИСЗ над районом съемки различают утренние, полуденные и сумеречные орбиты. Солнечно-синхронные обратные орбиты используются для ресурсных и метеорологических спутников.


4. ФИЗИЧЕСКИЕ ОСНОВЫ И ПРИРОДНЫЕ УСЛОВИЯ ПОЛУЧЕНИЯ АЭРОКОСМИЧЕСКИХ СНИМКОВ

При дистанционных методах исследования информация об объекте переносится к регистрирующему прибору с помощью электромагнитных волн. Электромагнитное излучение относится к наиболее важным посредникам при дистанционных наблюдениях окружающей среды. Представляя единственную форму переноса энергии в открытом космосе, электромагнитное излучение отличается большим разнообразием свойств и проявлений. Чтобы разобраться в различных методах дистанционных наблюдений, нужно иметь представление об электромагнитном спектре . Под электромагнитным спектром следует понимать классификацию электромагнитных волн по их длинам.

Электромагнитные волны различных излучений занимают вполне определенные участки в спектре. Чаще используемые в аэрокосмических методах электромагнитные колебания относятся к участкам оптических и ультракоротких радиоволн. Для удобства изучения электромагнитный спектр разбивают на ряд участков.

Участок оптических волн (0,001-1000 мкм) включает ультрафиолетовый (< 0,4 мкм), видимый (0,4-0,8 мкм) и инфракрасный (0,8-1000 мкм) диапазоны. В ультрафиолетовом диапазоне выделяют ближнюю (400-300 нм), среднюю (300-200 нм) и дальнюю (< 200 нм) области. Видимый диапазон, в котором глаз способен различать цветовые различия, делят на цветовые зоны со следующими названиями цветов и границами в нанометрах: фиолетовый 390-450, синий 450-480, голубой 480-510, зеленый 510-550, желто-зеленый 550-575, желтый 575-585, оранжевый 585-620 и красный 620-800. Диапазон инфракрасного (ИК) излучения подразделяется на поддиапазоны ближнего (< 1,5 мкм), среднего (1,5-3 мкм) и дальнего (> 3 мкм) инфракрасного излучения. В ближнем и среднем ИК-поддиапазонах преобладает отраженное (солнечное) излучение, а в дальнем, называемым тепловым, собственное излучение Земли. Волны длиной 0,1-1 мм иногда называют субмиллиметровыми.

Участок спектра, охватывающий ультракороткие радиоволны, принято разбивать на диапазон миллиметровых, сантиметровых, дециметровых и метровых радиоволн. Сантиметровые и дециметровые волны часто объединяют в диапазон радиоволн сверхвысоких частот (СВЧ). В переводной литературе миллиметровые и сантиметровые волны относят к одному диапазону, называемому микроволновым.