» » Knx особенности проектирования и программирования. Технология KNX для систем автоматизации. Протокол передачи данных

Knx особенности проектирования и программирования. Технология KNX для систем автоматизации. Протокол передачи данных

Фирмы-члены KNX Association обеспечивают производство изделий, совместимых с шиной. Благодаря этому устройства различных изготовителей способны работать в одной установке KNX/EIB.

Стремление к большему удобству и большим техническим возможностям требует и все бoльших затрат на электрооборудование.

Обычный способ электроустановки (выполнения внутренних электропроводок) наталкивается здесь на свой предел. Шина KNX/EIB позволяет удовлетворить эти обширные требования наглядно и экономично.

Аргументы в пользу системы

В системе обычной электроустановки каждая функция требует своей собственной электропроводки, а каждая система управления - своей собственной цепи. В отличие от этого шина KNX/EIB позволяет выполнить управление, контроль и сигнализацию всех эксплуатацинно-технических функций и процедур по общему проводу. Благодаря этому подвод питания может быть проложен непосредственно к потребителям, минуя окольные пути.

Помимо экономии проводов из этого вытекают и другие достоинства:

  • Электроустановка здания может быть выполнена гораздо проще, а позже без проблем расширена и модифицирована;
  • При изменении назначения или перераспределении помещений быстрое и легкое согласование системы instabus EIB осуществляется простым перераспределением (изменением параметров) абонентов шины без необходимости прокладки новых электропроводок.

Такое изменение параметров, осуществляется при помощи подключенного к системе KNX/EIB персонального компьютера и установленных для этой цели программных средств проектирования и ввода в эксплуатацию ETS (EIB Tool Software), которые требуются уже при первом вводе в работу. Шина KNX/EIB позволяет соединиться через соответствующие интерфейсы с другими системами автоматизации зданий. При этом шина KNX/EIB в доме на одну семью может использоваться столь же экономично, как и в гостиницах, школах, банках, конторских зданиях или в комплексном гражданском строительстве.

Техника передачи

Шина KNX/EIB представляет собой децентрализованную систему событийного управления с последовательной передачей данных управления, контроля и сигнализации эксплуатационно-технических функций. Подключенные к шине абоненты могут обмениваться информацией через общий канал передачи, шину. Передача данных происходит последовательно по точно установленным правилам (протоколу шину). При этом подлежащая передаче информация упаковывается в телеграмму и транспортируется по шине от датчика (сенсора — отправителя команд) к одному или нескольким исполнительным механизмам (акторам — получателям команд).

При успешной передаче каждый приемник квитирует получение телеграммы. При отсутствии квитирования передача повторяется до трех раз.

Если и после этого квитирование телеграммы отсутствует, процесс передачи прерывается и в запоминающем устройстве отправителя отмечается отказ.

Передачи в шине KNX/EIB гальванически не разделены, поскольку питание (DC 24 В) абонентов шины подается по ней же. Телеграммы модулируются на этом напряжении постоянного тока, причем логический нуль пересылается в виде импульса.

Отсутствие импульса интерпретируется как логическая единица.

Отдельные данные телеграммы пересылаются асинхронно. Тем не менее, пересылка синхронизируется старт- и стоп-битами.

Доступ к шине, как к общему физическому средству связи для асинхронной пересылки должен быть однозначно урегулирован. В шине KNX/EIB для этого применяется метод CSMA/CA. В методе CSMA/CA речь идет о методе, гарантирующем случайный, беспроблемный доступ к шине, при этом без снижения ее пропускной способности.

Все абоненты шины слушают одновременно, но реагируют только исполнительные механизмы (акторы), вызванные своим адресом. Если абонент хочет начать пересылку, он должен прослушать шину и дождаться момента, когда не будет передачи любого другого абонента (Carrier Sense). Если шина свободна, то, в принципе, любой абонент может приступить к передаче (Multiple Access).

Если два абонента одновременно начинают передачу, то на шину без задержки выходит абонент, обладающий более высоким приоритетом (Collision Avoidance), при этом другой абонент уступает и процесс передачи повторяется в более позднее время.

Если оба абонента имеют одинаковый приоритет, то проходит тот, который обладает меньшим физическим адресом.

Адресация

Каждое письмо нуждается в адресе, чтобы почта могла его правильно доставить. Сходно осуществляется и адресация абонентов шины, только здесь неприменима почтовая форма.

Каждый абонент шины при проектировании при помощи ETS получает свой собственный физический адрес, позволяющий однозначно идентифицировать его, так же как почтовый адрес однозначно указывает получателя письма. Физический адрес, однако, должен задаваться на языке шины и ориентироваться на топологическую структуру системы KNX/EIB. Физическая адресация используется ETS только для ввода в работу отдельных абонентов или для работ по обслуживанию и диагностике. В этом случае адресация производится аналогично почтовой адресации.

В практической работе системы KNX/EIB при пересылке телеграмм используются, напротив, логические или так называемые групповые адреса. Они ориентируются не на топологию шины, а на эксплуатационно-технические функции (применения) системы KNX/EIB. В отличие от почтовой доставки, когда почта доставляет письмо по адресу получателя, в каждую телеграмму отправителем вносится запроектированный групповой адрес. Каждый абонент прослушивает эту телеграмму на шине, считывает указанный в ней групповой адрес и проверяет, адресована телеграмма ему или нет.

Во время проектирования системы KNX/EIB при помощи ETS для каждого абонента шины устанавливается групповой адрес, по которому он должен ощущать себя вызванным. Таким образом, в отличие от почтового отправления, одному абоненту шины может быть присвоено несколько групповых адресов.

Если теперь абонент шины прослушивает телеграмму, он всегда воспринимает ее, если ощущает себя вызванным по внесенному в телеграмму групповому адресу (и пересылка прошла успешно). В противном случае он пренебрегает телеграммой, поскольку она предназначена не ему.

Топология

К наименьшей единице системы KNX/EIB, линии, могут подключаться и работать до 64 совместимых с шиной устройств (абонентов). Линейными устройствами сопряжения, подключаемыми к так называемой главной линии, могут объединяться в одну зону до 12 линий.

Через зонные устройства сопряжения, подключаемые к так называемой зонной линии, 15 зон могут быть объединены в более крупный блок. К зонной линии (Gateways) подключаются интерфейсы внешних систем (SICLIMAT X, ISDN и т. п..) или других систем KNX/EIB.

Хотя в один блок может быть объединено до 12.000 абонентов, ясная логика системы сохраняется. При работе не возникает никакого информационного хаоса, поскольку телеграмма проходит через интерфейс к другим линиям и функциональным зонам только в том случае, если там под групповым адресом должен быть вызван абонент. При этом линейные и зонные устройства сопряжения выполняют необходимые функции фильтрации.

Физические адреса ориентированы на такую топологическую структуру: каждый абонент может быть однозначно идентифицирован указанием зонного, линейного и абонентского номера.

Для присвоения абоненту эксплуационно-технических функций групповые адреса разделяются на основные группы и подгруппы.

При проектировании групповые адреса различных механизмов могут быть разделены на 14 основных групп, напр., для:

  • управления освещением,
  • управления жалюзи,
  • управления отоплением,
  • вентиляцией и управления климатом помещений.

Каждая основная группа может в соответствии с точкой зрения пользователя содержать до 2048 подгрупп. Групповые адреса присваиваются абонентам независимо от их физических адресов.

Благодаря этому каждый абонент может связываться с любым другим абонентом.

Технология

Каждая линия требует свой собственный блок питания для абонентов. Этим обеспечивается работоспособность остальной системы KNX/EIB даже при выходе из строя одной линии.

Блок питания снабжает отдельных абонентов линии напряжением SELV (безопасным сверхнизким напряжением) DC 24 В и способен в зависимости от исполнения нести нагрузку 320 мА или 640 мА. Он имеет ограничение, как по напряжению, так и по току и поэтому устойчив при коротком замыкании. Кратковременные перерывы напряжения сети перекрываются на время до 100 мс.

Нагрузка шины зависит от характера подключенных к ней абонентов. Абоненты сохраняют работоспособность при минимальном напряжении DC 21 В и обычно потребляют от шины 150 мВт, при дополнительном потреблении конечными устройствами (напр., светодиодами) — до 200 мВт. Если более 30 абонентов установлены на кротком участке линии, блок питания должен размещаться вблизи от них.

Для одной линии допустимо макс. 2 блока питания. Между обоими блоками питания должно соблюдаться минимальное расстояние 200 м (длина линии).

При повышенном потреблении к шине KNX/EIB может подключаться параллельно и 2 блока через общий дроссель. Допустимая токовая нагрузка линии повышается при этом на 500 мА.

Длина проводов одной линии вместе с ответвлениями не должна превышать 1000 м. Расстояние между блоком питания и абонентом не должно быть более 350 м.

Для однозначного предотвращения коллизий телеграмм расстояние до второго абонента ограничено макс., 700 м. Провод шины может быть проложен параллельно сетевому проводу. Он может иметь петли и ответвления. Оконечное линейное сопротивление при этом не требуется.

Абоненты соединяются с шиной либо прижимным контактом, либо шинным зажимом. Соединение прижимным контактом осуществляется при защелкивании абонента распредустройства на монтажной рейке DIN EN 50 022-35 x 7,5 с наклеенной информационной шиной. Переход от информационной шины к шинному проводу осуществляется соединительным устройством. Подключение шинного провода к абонентам открытой и скрытой проводки, настенного и потолочного монтажа и встроенным устройствам осуществляется путем надевания шинного зажима.

Подскажите имеет ли смысл организовать управление светом в доме на базе KNX,
или есть более простые и грамотные решения?
ТАК КАК В ОСНОВНОМ СПРАШИВАЮТ ОДНО И ТО ЖЕ, В ТОМ ЧИСЛЕ В ЛИЧНЫХ СООБЩЕНИЯХ, ПРИВОЖУ ВАМ МОЙ ОТВЕТ ОДНОМУ ИЗ ПОЛЬЗОВАТЕЛЕЙ.

Вам нужно принять единственно верное для себя СТРАТЕГИЧЕСКОЕ решение. Дело в том, что 90% диммеров и реле EIB выпускаются в форм-факторе для шитового монтажа:

Таким образом если Вы хотите в какой-либо комнате диммировать три группы света, то Вам надо установить вот такую коробку в этажный щит и проложить ТРИ отдельных провода для ТРЕХ отдельных групп света. Ну или допустим проложить три отдельных фазы до комнаты, а ноль и землю взять общую (т.е. воспользоваться одним кабелем типа ВВГнг 5х1,5 вместо трех кабелей ВВГнг 3х1,5 или "набрать" кабель отдельными жилами из провода ПВ3). Это дорого, нудно и жестко привязывает Вас к дизайн-проекту помещения. Поэтому умные люди пошли дальше и изобрели стандарт DALI:

Почитаете про него сами. В кратце суть такая. На каждую группу света Вы ставите отдельный электронный балласт с микропроцессором и образуете шину по аналогии с кабелем EIB. Т. е. для управления всем светом по всему дому достаточно везде проложить кабель 5х1,5 по аналогии с кабелем EIB. И все. Если Вы хотите где-то воткнуть новую лампу - разрываете провод, ставите балласт и прописываете его адрес на шине. Всего грубо говоря на один провод можно повесить 64 группы света, т. е. 64 одноадресных балласта. Если балласт многоканальный (обычно это RGB-светодиодные балласты), то он занимает столько адресов, сколько в нем каналов.

Из EIB в DALI есть шлюзы у всех производителей:

Загвоздка с балластами. Они не дешевые, но и из этого есть выход - косые освоили их выпуск, в основном для газоразрядных ламп:

Если вдруг у Вас галогенки или лампы накаливания, придется отваливать много евро за Osram, Philips и Tridonic. Atco. Продукция Easeic в России не сертифицирована и не продается официально. Неофициально можно протащить небольшое количество, пишите в личку, если интересно.

Таким образом:

1. Диммеры EIB:
+ Идеально для небольших площадей, когда длина кабеля не играет существенной финансовой роли.
+ Дешевая реализация включения-выключения,
+ Доступная реализация диммирования,
+ Простота коммутации и высокая надежность - при отказе EIB практически все можно включить вручную в щите.
- Требуется тщательное планирование, разговоры после зашивки трасс от щита до комнаты в стиле "дорогой, а давай в этой комнате повесим этот симпатичный ночник вот на той стене" можете сразу запретить в семье
- Требуется большой щит,
- Требуется больше гофры, кабеля, клипс, автоматов защиты и денег на оплату монтажа.
- По LED диммерам пока ограниченное предложение.

2. Диммеры DALI:
+ Дешевая реализация диммирования и включения-выключения, если делать упор на светодиоды и газоразрядные лампы,
+ Требуется один единственный кабель по всему дому типа ВВГнг 5х1,5,
+ Легкое добавление любых групп в любой комнате по аналогии с EIB (режете кабель, добавляете балласт, перепрограммируете, пользуетесь),
+ Балласты с электронной защитой от КЗ и перегрузки, они так же сообщают о том, что лампа перегорела,
- Балласты занимают место - идеальнее всего их прятать за подшивным потолком или в глубоких длинных монолитных подрозетниках (на 3...5 розеток). Т. е. если у Вас освещение сделано в стиле советских пятиэтажек - протянут провод через пустотную плиту, надо будет думать куда прятать балласт,
- Европейские балласты дорогие, особенно для галогенных ламп и для реализации "включения-выключения".

При ограниченном бюджете, наличии грамотного проекта освещения, с упором на галогенные лампы и группы "включено-выключено", при небольшой площади помещений, я делаю все на KNX.

При отсутствии понимания того, что в итоге нужно, при автоматизации "дворцов", а так же при "сложном" (светодиоды и газоразрядные лампы) освещении, делаю все на DALI.

Гибридные решения то же имеют право на жизнь.

Привет! Попробую рассказать, как можно построить систему управления домом при помощи системы KNX. Основные вопросы, которые я хочу осветить - подход к воплощению «умного дома» на KNX, ориентиры по стоимости, подводные камни. Если материал «зайдет», продолжу. Я не стремлюсь впихнуть невпихуемое: за пределами статьи останутся диммеры, управление RGB и подобное - пока что мы просто включаем и выключаем свет:)

TL;DR: это не так дорого, как может показаться на первый взгляд и достаточно надежно.

Подход

На мой (и не только) взгляд, «умный дом» - совокупность систем, которые упрощают жизнь. В идеале, функционирование большинства систем должно быть незаметно для конечного пользователя - настроил и забыл - это относится к системам управления освещением, отоплением, кондиционированием. В отличие от «классического» подхода, хочется иметь возможность тонкой настройки в процессе - далеко не все хотелки можно вообразить на этапах проектирования и пусконаладки.

KNX

Почему KNX? Пропуская маркетинг, отмечу основные преимущества системы:
  • KNX - децентрализованная система. Это значит, что при необходимости, можно заменить любой компонент, почти не оказывая влияния на остальные. В частности, нет централизованного контроллера, который бы управлял всем и вся. Разумеется, в бюджетных системах присутствуют точки отказа типа блоков питания, но с этим вполне можно мириться.
  • Система, по сути, не привязана к конкретному вендору - можно выбирать любое оборудование, исходя из потребностей, бюджета и эстетических предпочтений. Если хочется иметь выключатели одного немецкого производителя, контроллеры - другого и третьего, а термостаты - вообще итальянские - никто не препятствует. Как правило, взаимосвязи между устройствами прописываются без каких-либо проблем. Для примера, я использую оборудование MDT , но на его месте может быть все что угодно - выбор огромен .
  • Из предыдущих пунктов возникает еще один приятный момент: в любой момент систему можно расширять и улучшать. Условно, если изначально были установлены кнопочные выключатели, при возникновении потребности (и возможности) можно заменить их на сенсорные. Или вообще обвешаться многофункциональными экранами.
Надо сказать, что у системы есть один заметный нюанс - среда программирования существует всего лишь одна, со своими достоинствами и недостатками, называется ETS и стоит денег - от 200 евро за версию с ограниченным количеством устройств в проекте (до 20 - для небольшой инсталляции вполне достаточно) до 1000 евро за версию с неограниченным количеством устройств. Говорят, есть адаптированная для российского рынка версия где-то на торрентах - не встречал.

Общие принципы проектирования

KNX - в первую очередь шина. Двухпроводная, но при монтаже полагается использовать четырехпроводный кабель - рекомендуется JY(St)Y 2х2х0,8 - такой же, как в системах охранно-пожарной сигнализации. Используются две жилы - красная и черная, белая с желтой - про запас. Кабель - экранированный, наводок не боится.

Топологически, KNX - дерево, главное - не допускать колец. Терминирующих устройств не требуется.

Вся система делится на исполнительные устройства (акторы - управляемые реле разнообразного назначения), сенсоры (кнопки, выключатели, термостаты, погодные станции) и системные устройства - блоки питания, линейные соединители и прочее.

Управляем освещением

Предположим, нам нужно организовать управление освещением в небольшом доме - допустим, у нас два этажа, лесенка и несколько комнат - несколько спален, кабинет, санузлы и всякие проходные помещения типа лестничных пролетов, прихожих и тому подобного.

В простейшем случае, хочется следующего:

  1. Удобство. Например, если приходишь домой поздно, хочется сразу засветить прихожую, лестницу крыльцо и далее. Еще - включать/выключать свет в санузле по датчику присутствия.
  2. Борьба с забывчивостью. Лег спать, а из под двери пробивается свет из коридора. Ну и фиг с ним, пусть сам погаснет через, например, 10 минут.
  3. Возможность включать аварийное освещение - допустим, мы в спальне на втором этаже, а в дверь кто-то звонит - засветим сразу лестницу, коридор, крыльцо
  4. Возможность погасить весь дом при уходе
Посчитаем группы освещения, накидаем на план выключатели, прикинув их роли: от этого зависит количество клавиш. Многие производители делают аж восьмикнопочные выключатели в одноместную установочную коробку - типа такого:

Это позволяет реализовать кучу всего на одном выключателе, но не всегда удобно в плане поиска нужной кнопки.

Для любителей классической электроустановки, можно вместо нативных выключателей KNX использовать обычные, с передачей сигнала в шину посредством сухого контакта, размещаемого под выключателем в монтажной коробке (на картинке - сухарь под четырехклавишный выключатель):

Исходя из количества групп и их назначения, можно выбрать многоканальное реле (не забываем учитывать токи нагрузки). Их производят примерно все, однако распространены устройства Gira, ABB, MDT, Zennio.

Дальше - план проводки. От щита к выключателям подводится только шинный кабель, тот самый JY(St)Y 2х2х0,8. К нагрузкам (светильникам) - соответствующий электрический кабель (ВВГ, NYM - по вкусу). Количество и расположение щитов - по вкусу. В трехэтажном таунхаусе я делал три этажных щита - в каждом по многоканальному реле для управления светом на этаже, так меньше электрического кабеля разматывать.

Приятный бонус: свободные каналы реле можно использовать для управления розетками. Однако, поскольку многоканальники имеют, как правило, небольшую мощность (токи до 10А), на розетки нужно использовать промежуточные реле соответствующей мощности.

Запуск

Итак, все провода протянуты, устройства установлены, щиты скоммутированы. Можно попробовать всё это запустить - потребуется та самая ETS. Я пропущу стартовые шаги - создание топологии здания в проекте, добавление устройств и т.д. Если интересно - спрашивайте в комментариях, попробую сделать базовый tutorial.

В соответствии с хотелками и количеством групп освещения, планируем групповую адресацию.
Группа - это такая сущность в шине, которую слушают привязанные к ней акторы и в которую пишут всякие значения сенсоры. Актор (например, канал реле) можно привязать к нескольким группам, сенсор будет писать в одну группу.

Например: на первом этаже есть четырехканальное реле, с которого мы включаем/выключаем свет на крыльце, в прихожей, санузле и гостиной.

Целесообразно предложить следующие группы (используем трехуровневую структуру групповых адресов, первый этаж - 0, освещение первого этажа - 0/0):

0/0/0 - весь свет первого этажа, привязан ко всем каналам
0/0/1 - свет на крыльце, канал А
0/0/2 - свет в прихожей, канал B
0/0/3 - свет в санузле, канал C
0/0/4 - свет в гостиной, канал D

Вот как это выглядит в среде программирования:

Например, в гостиной первая кнопка включает/выключает (toggle) свет в самой гостиной, а вторая - принудительно выключает весь свет на этаже:

Привязка света в гостиной:

Выключение всего света на этаже:

Для переключений (toggle), необходимо передавать с каналов реле в шину их состояния, чтобы выключатель знал, какое значение передать в шину.

При необходимости, привязываем диоды на выключателях к состоянию соответствующих каналов реле - смысл аналогичный, картинками грузить не буду.

Загружаем конфигурацию в устройства и наслаждаемся эффектом:)

Дальше начинаем играться с проектом реле - задержки отключения, функции автоматического отключения света, настройка проходных выключателей в неограниченном количестве и так далее - до получения нужного эффекта.

Сколько это стоит?

Вопрос, на самом деле, многогранный. Можно пойти в отечественный интернет-магазин и купить все буквально втридорога. Можно заказать где-нибудь в Европе - приведу немецкие ценники (от которых с удовольствием дают очень приятную скидку) для той минимальной инсталляции, которую только что описал:

1. Блок питания 320мА: 110 евро
2. Четырехканальное реле: 145 евро
3. Четыре выключателя: 65 евро за каждый

Итого - 515 евро, 130 евро за канал освещения. Не забываем про возможные скидки и про то, что более емкие дают более низкую стоимость канала освещения.

Для желающих сэкономить - имеет смысл иногда шерстить авито - иногда там распродают сладкие остатки, главное - следить за ценой.

Что дальше?

  1. Можно выбирать платформу для управления освещением по сети (со смартфона, например).
  2. Можно внедрять в систему датчики присутствия, освещенности и так далее - в зависимости от фантазии (конечно, проводку под них надо закладывать на этапе проектирования)
  3. Можно, наконец, вспомнить про то, что KNX - это не только свет, но и климат и прочие удобства - но это уже явно за пределами вводной статьи:)
Спасибо за внимание:)

Для связи всех устройств для автоматизации здания необходимо их подключить к общему каналу связи - шине KNX. С помощью шины устройства системы могут обмениваться телеграммами (пакетами) для передачи информации. Если передача и прием прошли успешно, то устройство-приемник, которому предназначалось сообщение подтверждает получение телеграммы. В случае отсутствия подтверждения устройство-передатчик повторяет отправку сообщения еще два раза. Если и в этом случае подтверждение не приходит, то процесс передачи данных прерывается. Таким образом, протокол KNX является протоколом с "обратной связью". В каждый момент времени может быть отправлена только одна телеграмма. Примерная структура сети KNX показана на рисунке 1.

Рис. 1.

Протокол KNX может использовать различные среды для передачи данных :

  • · KNX/TP - витая пара со скоростью передачи данных 9600 бит/с;
  • · KNX/PL - силовая линия (230 В и 50 Гц) со скоростью передачи данных 1200 бит/с;
  • · KNX/RF - радиоканал, имеющий два частотных окна 868 и 433 МГц;
  • · KNX/IP - сеть Ethernet.

В рамках дипломной работы в качестве среды передачи данных используется витая пара (KNX/TP). Данный метод организации системы домашней автоматики на базе KNX является наиболее распространенным и актуальным, так как такие системы просты для планирования и разработки и позволяют создать функциональные и гибкие решения, удовлетворяющие требованиям заказчика. Кабель витой пары может прокладываться поверхностным (контрольные панели) или скрытым (радио-модули) монтажом. Благодаря большим возможностям настройки и программирования, стандарт KNX является удобным как для разработчика, так и для конечного пользователя. Кабель витой пары, состоящей из красной (+) и черной (-) пары проводов, можно использовать как для передачи телеграмм, так и для подачи питания устройств.

Для того, чтобы система начала работать недостаточно просто соединить кабелем все устройства и подключить к питанию. Необходимо настроить и запрограммировать устройства, используя специальное программное обеспечение ETS Professional.

Engineering Tool Software (ETS) - специальное программа для проектирования, конфигурации и диагностики интеллектуальных систем на базе стандарта KNX. ETS возможно использовать для настройки многих инженерных систем:

  • · Управление освещением (включение/выключение, диммирование);
  • · Управление шторами;
  • · Система микроклимата (отопление, вентиляция, кондиционирование);
  • · Безопасность (сигнализация, видеонаблюдение, защита от протечек)
  • · Управление энергией;
  • · И др.

Существует несколько способов настройки устройств:

  • 1) В S-режиме (system) - шинные устройства становятся функциональными после загрузки в универсальный блок сопряжения с шиной определённой аппликационной программы, индивидуальной для каждого устройства. В данном режиме у инсталлятора есть полный доступ к программированию и настройке всех параметров устройств. Наиболее часто используемая конфигурация для систем KNX.
  • 2) Е-режим (easy) - исполнительные устройства уже являются полностью функциональными на момент подключения к шине KNX, программа загружается в блок сопряжения уже при изготовлении устройства. Логическая связь между такими KNX-устройствами и установка соответствующих параметров выполняется аппаратно, либо через контроллер, причем большинство настроек уже выставлено по умолчанию.
  • 3) В А-режиме (auto) происходит автоматическая упрощенная настройка устройств при их подключении к центральному блоку управления. В последних спецификациях протокола KNX не используется.

Для инсталляции KNX у каждого устройства в сети должен быть индивидуальный уникальный физический адрес. Назначение адреса можно произвести с помощью ETS. Для этого необходимо перевести устройство в программный режим (например, нажатием на программную кнопку на корпусе). Для подтверждения режима программирования должен загореться светодиод. Физический адрес устройств имеет следующую структуру: Зона.Линия.Устройство (например, адрес 1.3.4 определяет четвертое устройство в третьей линии первой зоны). Для физического адреса зарезервировано 16 бит информации. На рисунке 2 представлено распределение битов.


Рис. 2.

Далее необходимо выбрать аппликационные программы для каждого устройства и настроить различные параметры, исходя из требований проекта. После создается структура из групповых адресов (как правило для сложных инсталляций, трёхуровневая - главная группа/средняя группа/подгруппа, например, 1/1/1), и в данных групповых адресах объединяются различные объекты связи устройств, участвующих в инсталляции (например, датчик связывается с исполнительным логическим модулем). Трехуровневая система групповых адресов использует 4 бита информации для главной группы, 3 бита для средней и 8 бит для подгруппы. Таким образом, можно использовать максимально 16 главных групп (0-15), 8 средних (0-7) и 256 подгрупп (0-255).

Пример использования:

  • 1/1/1 - Лампа в спальне
  • 1/1/2 - Торшер в спальне
  • 1/2/1 - Люстра в гостиной
  • 1/2/2 - Настольная лампа в гостиной
  • 2/1/1 - Обогреватель в спальне

Необходимо учитывать, что получателями телеграмм могут быть несколько исполнительных устройств, но при этом сенсоры могут отправлять сигналы с информацией только по одному физическому адресу.

У каждого устройства есть несколько объектов связи. Их количество отличается в зависимости от назначения. Объекты связи могут иметь различный размер от 1 бита до 14 байт. Размер объекта зависит от выполняемой функции (например, 1-битовый объект используется для включения/выключения, а 4-битовый для диммирования).

Для наглядности рассмотрим следующий пример функционирования настроенной системы. Одноклавишный выключатель привязан к физическому адресу (1.1.1). Если нажать на кнопку выключателя и переключить его в положение "Включено", то отправится телеграмма с групповым адресом 4/2/3, которая содержит значение "1" и определённую служебную и контрольную информацию. Далее все устройства, находящиеся в общей сети KNX, получают данную телеграмму и обрабатывают ее, но только устройства с групповым адресом 4/2/3 отправляют контрольную телеграмму о подтверждении получения информации, после считывают значение "1" и обрабатывают его (например, исполнительное устройство с физическим адресом 1.1.2 замкнет реле, и лампа включится).

Как было сказано выше, передача данных по KNX/TP осуществляется с помощью кабеля витой пары. Шинные устройства подключаются к шине посредством универсального клеммника (рис. 3).

Рис. 3.

При каком-либо произошедшем событии происходит отправка телеграммы (например, пользователь нажал на кнопку). Если шина не занята некоторое время t1, то происходит передача данных. После отправки телеграммы должно пройти некоторое время t2, через которое происходит подтверждение получения от устройства, которому предназначалось сообщение. Общая схема отправления представлена на рисунке 4.


Рис. 4.

Каждая отправленная телеграмма состоит из набора служебных данных, определенного протоколом и полезной информации, которая описывает происшедшее событие (например, нажатие клавиши). Информация в телеграмме состоит из пакетов по 8 байт. Существуют определённые старт- и стоп- биты для определения начала и конца сообщения. Контрольная информация позволяет обнаружить ошибки в ходе передачи данных. На рисунке 5 представлена структура телеграммы.


Рис. 5.

Для передачи информационного сигнала используется модулирование напряжения, а точнее сообщение передается в виде импульса, который представляет собой разность напряжений, которая возникает между проводами витой пары среды передачи данных KNX/TP. Отсутствие импульса (разность потенциалов номинально равна 24 В) означает логическую "1". Отправка импульса с примерной амплитудой ±6 В означает логический "0".

Для того, чтобы передача данных осуществлялась с минимальными ошибками и задержками необходимо соблюдать определенные требования для создания сети (рис. 6) :

  • · Максимальная длина линии должна быть не более 1000 м;
  • · Максимальная длина кабеля, протянутого между двумя устройствами в сети должна не превышать 700 м;
  • · Минимальная длина кабеля, протянутого между двумя источниками питания должна составлять 200 м.

Рис. 6.

При проектировании системы необходимо уделить внимание количеству шинных устройств, используемых в сети и выбрать необходимую топологию (способ соединения всех элементов между собой). Стандарт KNX поддерживает большинство известных топологий за исключением "кольца" и имеет следующую структуру: устройства соединяются в линию, несколько линий соединяются в зону и несколько зон объединяются через системную линию (рис. 7).


Рис. 7.

Например, зоной является этаж здания, а линиями - комнаты на этаже. Каждая линия может включать максимум 4 сегмента, каждый из которых, в свою очередь, может состоять из 64 различных устройств. При этом необходимо учитывать, что каждому сегменту необходим отдельный источник питания. Для соединения сегментов в линии, а также соединения линий в зону используется линейный повторитель. Это помогает распределить нагрузку в шине. Таким образом, в системе можно объединить между собой более 58000 устройств.

Одно из основных требований, которые предъявляют к умному дому, это значительное снижение расходов на электроэнергию. Ведь сама концепция умного дома предполагает управление потреблением электроэнергии, чтобы снизить его расход в тех комнатах и ситуациях, в которых можно обойтись естественным освещением. Поэтому умный дом контролирует не только освещение, но и отопление, а также другие функции. Еще одно требование к умному дому – возможность без серьезной доработки применять оборудование от различных производителей. Именно для этой цели и был разработан стандарт KNX.

Каждый владелец умного дома желает подстроить его под какие-то свои требования и пожелания. Разработка системы управления таким домом с нуля обойдется очень дорого, поэтому гораздо проще взять максимально гибкую систему и выстроить ее архитектуру в соответствии со своими пожеланиями. Стандарт KNX – общая системная платформа, позволяющая использовать аппаратуру любого производителя, придерживающегося этого стандарта.

Кроме того, KNX – это набор протоколов для обмена данными между всеми участниками системы. Поэтому установка нового оборудования требует лишь минимального вмешательства в систему, ведь все элементы умного дома работают по одному стандарту и обмениваются данными по одним протоколам.

KNX – это шина, которая объединяет все элементы умного дома в единое целое. Основное преимущество KNX в невероятной гибкости, ведь для изменения конфигурации всей системы достаточно удалить ненужные элементы и установить вместо них более подходящие или необходимые. При этом не придется менять управляющую систему, перепрограммировать ее и мучительно согласовывать ее элементы между собой. Ведь недавно именно это и было главной проблемой, над которой бились монтажники управляющих систем умных домов – каждый производитель придерживался собственных стандартов, поэтому приходилось придумывать способы согласования деталей между собой.

Возможности шины KNX

На самом деле вопрос не в том, что может KNX, а в том, чего хочет владелец умного дома. Шинная система управляет любым оборудованием по заданному ей алгоритму, поэтому в рамках этой задачи KNX может все. Система, работающая на этом стандарте управляет всеми потребителями электричества в умном доме, поэтому KNX может обеспечить их работу в любых допустимых режимах, в зависимости от настроек и пожеланий владельца дома. Поэтому возможности систем стандарта KNX напрямую зависят от того оборудования, которое к ним подключено.

Использование шины KNX позволяет создавать различные системы управления умным домом. К примеру, система free@home от концерна ABB позволяет создать универсальную и простую в настройке и использовании систему, в которой управление домом может осуществляться в трех режимах:

  • автоматическом;
  • через команды с сенсорного пульта управления;
  • с помощью мобильного приложения для смартфона или планшета.

Все три режима обеспечивают полный контроль над энергопотреблением умного дома. Поэтому даже находясь далеко от дома, вы сможете контролировать безопасность своего жилища, наблюдать за детьми, включать и выключать различные электрические приборы.

Как это работает

Каждое устройство, подключенное к шине KNX имеет свой уникальный ip-адрес, а также список устройств, с которыми оно взаимодействует. Датчики и иные устройства, отслеживающие изменение обстановки, запрограммированы таким образом, чтобы при наступлении определенного события посылать связанным с ним устройствам сигнал.

В зависимости от настроек системы конечные устройства, которые и управляют подачей электроэнергии на различные приборы, могут реагировать как на определенные ситуации, так и на целый перечень различных событий. Поскольку к одной линии нельзя подключить больше 64 любых устройств, используют различные способы соединения нескольких шин в одну систему. В таких объединенных системах все происходит по стандарту KNX, поэтому никаких серьезных сложностей с настройкой не возникает.

Для связи между устройствами вне шины используют три вида каналов:

  • проводные;
  • оптические;
  • радиочастотные.

Проводные каналы наиболее востребованы, ведь для подключения к ним конечного устройства не требуется никаких дополнительных манипуляций. Оптическими и радиочастотными каналами пользуются лишь в том случае, если все, связанные этими каналами устройства, оснащены соответствующими приемо-передатчиками. В частности, эти каналы используют для подключения выносных видеокамер там, куда по каким-то причинам невозможно проложить проводной канал шины. По всем каналам связь между устройствами происходит по одним и тем же протоколам стандарта KNX.

Что такое ABB

Концерн ABB (в русской транскрипции АББ) занимается разработкой и производством оборудования для автоматизации различных процессов, в том числе для управляющих систем умных домов. Концерн был образован в 1988 году после слияния шведской компании Asea и швейцарской компании ВВС (Brown, Boveri & Cie). К этому времени обе компании обладали колоссальным опытом в сфере информационных технологий и автоматизации, поэтому АББ была одним из создателей стандарта KNX.

Концерн предлагает огромный перечень устройств, необходимых для создания полноценной сети, которая будет эффективно управлять умным домом. Несмотря на немалую стоимость, продукция концерна пользуется устойчивым спросом, потому что отличается великолепными характеристиками и полным соответствием стандарту KNX. К примеру, 12-канальный активатор отопления HA-M-0.12.1, который может одновременно управлять работой 12 клапанов системы отопления, обойдется в 23 тысячи рублей. Это заметно дороже китайских аналогов, но и гораздо надежней. Еще один пример – дисплей с поворотным управляющим элементом от ABB обойдется в 70–100 тысяч рублей , тогда как малонадежный китайский аналог можно купить за 20–40 тысяч . Но велика вероятность, что китайский элемент не прослужит и 2 лет.